资源类型

期刊论文 15

年份

2023 1

2022 1

2021 1

2020 2

2018 1

2017 1

2016 1

2015 1

2010 2

2009 2

2002 1

展开 ︾

关键词

个人热管理 2

仿生材料 1

双功能非对称织物 1

发射率 1

多输入多输出;空时块编码;最大似然;自动调制识别;迫零均衡 1

彩色测温 1

热传导 1

热辐射 1

纺织品 1

织物 1

色域 1

辐射制冷 1

辐射测温 1

展开 ︾

检索范围:

排序: 展示方式:

Challenge of global climate change: Prospects for a new energy paradigm

Michael B. MCELROY

《环境科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 2-11 doi: 10.1007/s11783-010-0005-8

摘要: Perspectives on the challenge posed by potential future climate change are presented including a discussion of prospects for carbon capture followed either by sequestration or reuse including opportunities for alternatives to the use of oil in the transportation sector. The potential for wind energy as an alternative to fossil fuel energy as a source of electricity is outlined including the related opportunities for cost effective curtailment of future growth in emissions of CO.

关键词: climate change     carbon capture     wind     ethanol     CO2     radiative forcing    

Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review

Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0904-z

摘要: Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 m, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earth-atmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.

关键词: Dust and sand storm     Climate effects     Radiative forcing     Cloud condensation nuclei     Precipitation     Iron fertilizer    

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 11-26 doi: 10.1007/s11708-009-0009-x

摘要: The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

关键词: metamaterial     nanostructured material     thermal radiative property     radiative energy transfer    

A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling

Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI

《能源前沿(英文)》 2020年 第14卷 第4期   页码 882-888 doi: 10.1007/s11708-020-0694-z

摘要: The sun and outer space are the ultimate heat and cold sources for the earth, respectively. They have significant potential for renewable energy harvesting. In this paper, a spectrally selective surface structure that has a planar polydimethylsiloxane layer covering a solar absorber is conceptually proposed and optically designed for the combination of photothermic conversion (PT) and nighttime radiative sky cooling (RC). An optical simulation is conducted whose result shows that the designed surface structure (i.e., PT-RC surface structure) has a strong solar absorption coefficient of 0.92 and simultaneously emits as a mid-infrared spectral-selective emitter with an average emissivity of 0.84 within the atmospheric window. A thermal analysis prediction reveals that the designed PT-RC surface structure can be heated to 79.1°C higher than the ambient temperature in the daytime and passively cooled below the ambient temperature of approximately 10°C in the nighttime, indicating that the designed PT-RC surface structure has the potential for integrated PT conversion and nighttime RC utilization.

关键词: solar energy     photothermic conversion     radiative sky cooling     spectral selectivity     multilayer film    

Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer

Zeshao CHEN, Songping MO, Peng HU, Shouli JIANG, Gang WANG, Xiaofang CHENG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 301-305 doi: 10.1007/s11708-010-0006-0

摘要: Taking nonequilibrium radiative heat transfer between two surfaces as an example, the nonequilibrium thermodynamics of radiation is studied and discussed. The formulas of entropy flow, entropy generation, exergy flux, and optimal temperature of absorbing surface for maximum exergy output are derived. The result is a contribution to the thermodynamic analysis and optimization of solar energy utilization and can be applied in more complex radiative heat transfer cases.

关键词: radiative heat transfer     entropy generation     exergy     thermodynamics    

Modeling radiative effects of haze on summer-time convective precipitation over North China: a case study

Xuying WANG, Bin ZHANG

《环境科学与工程前沿(英文)》 2016年 第10卷 第4期 doi: 10.1007/s11783-016-0840-3

摘要: We modeled the impact of haze radiative effects on precipitation in North China. Shortwave heating induced by haze radiative effects would reduce heavy rainfalls. Convection was the key factor that whether precipitation was enhanced or suppressed. Precipitation was often suppressed where CAPE, RH and updraft velocities were high. The impact of haze radiative effect on summertime 24-h convective precipitation over North China was investigated using WRF model (version 3.3) through model sensitivity studies between scenarios with and without aerosol radiative effects. The haze radiative effect was represented by incorporating an idealized aerosol optical profile, with AOD values around 1, derived from the aircraft measurement into the WRF shortwave scheme. We found that the shortwave heating induced by aerosol radiative effects would significantly reduce heavy rainfalls, although its effect on the post-frontal localized thunderstorm precipitation was more diverse. To capture the key factors that determine whether precipitation is enhanced or suppressed, model grids with 24-h precipitation difference between the two scenarios exceeding certain threshold (>30 mm or<-30 mm) were separated into two sets. Analyses of key meteorological variables between the enhanced and suppressed regimes suggested that atmospheric convection was the most important factor that determined whether precipitation was enhanced or suppressed during summertime over North China. The convection was stronger over places with precipitation enhancement over 30 mm. Haze weakened the convection over places with precipitation suppression exceeding 30 mm and caused less water vapor to rise to a higher level and thus further suppressed precipitation. The suppression of precipitation was often accompanied with relatively high convective available potential energy (CAPE), relative humidity (RH) and updraft velocities.

关键词: Haze     Aerosol radiative effects     Convective precipitation    

Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG

《能源前沿(英文)》 2009年 第3卷 第1期   页码 60-79 doi: 10.1007/s11708-009-0011-3

摘要: Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineerit transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) was reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

关键词: aerogel     fiber     particle scattering     radiative properties     soot     surface roughness    

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

《能源前沿(英文)》 2018年 第12卷 第1期   页码 5-21 doi: 10.1007/s11708-017-0517-z

摘要: Radiative thermoelectric energy converters, which include thermophotovoltaic cells, thermoradiative cells, electroluminescent refrigerators, and negative electroluminescent refrigerators, are semiconductor p-n devices that either generate electricity or extract heat from a cold body while exchanging thermal radiation with their surroundings. If this exchange occurs at micro or nanoscale distances, power densities can be greatly enhanced and near-field radiation effects may improve performance. This review covers the fundamentals of near-field thermal radiation, photon entropy, and nonequilibrium effects in semiconductor diodes that underpin device operation. The development and state of the art of these near-field converters are discussed in detail, and remaining challenges and opportunities for progress are identified.

关键词: energy conversion systems     luminescent refrigeration     near-field radiation     thermophotovoltaic     thermoradiative cell    

基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品 Article

郭竑宇, 牛田野, 俞建勇, 王学利, 斯阳

《工程(英文)》 2023年 第31卷 第12期   页码 120-126 doi: 10.1016/j.eng.2023.07.019

摘要:

通过将被动辐射制冷策略与个人热管理技术相结合,为缓解人体在户外活动中的热不适感提供了新的思路。然而,目前大多数被动辐射制冷材料在穿着舒适性和耐用性方面存在不足。本文采用微阵列技术,成功制备出了具有辐射制冷能力的定制光子工程可穿戴纺织品。所开发的辐射制冷纺织品(RCTs)具有一定的透气透湿性、结构稳定性和扩展光谱响应性(太阳光反射率91.7%、大气窗口发射率95.8%)。在正午炎热环境的室外降温测试中,RCTs所覆盖的皮肤模拟器温度比棉织物低4.4 ℃。这种仿生结构的开发为可穿戴、热湿舒适和结构稳定的辐射制冷纺织品在个人热管理领域的应用提供了新的见解。

关键词: 仿生材料     个人热管理     纺织品     辐射制冷    

The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing

Xiaofeng ZHANG,Xu ZHANG,Guanghe LI

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 269-278 doi: 10.1007/s11783-014-0672-y

摘要: Soil moisture variability in natural landscapes has been widely studied; however, less attention has been paid to its variability in the urban landscapes with respect to the possible influence of texture stratification and irrigation management. Therefore, a case study was carried out in the Beijing Olympic Forest Park to continuously monitor the soil in three typical profiles from 26 April to 11 November 2010. The texture stratification significantly affected the vertical distribution of moisture in the non-irrigated profile where moisture was mostly below field capacity. In the profile where irrigation was sufficient to maintain moisture above field capacity, gravity flow led to increased moisture with depth and thus eliminated the influence of texture. In the non-irrigated sites, the upper layer (above 80 cm) exhibited long-term moisture persistence with the time scale approximating the average rainfall interval. However, a coarse-textured layer weakened the influence of rainfall, and a fine-textured layer weakened the influence of evapotranspiration, both of which resulted in random noise-like moisture series in the deeper layers. At the irrigated site, frequent irrigation neutralized the influence of evapotranspiration in the upper layer (above 60 cm) and overshadowed the influence of rainfall in the deeper layer. As a result, the moisture level in the upper layer also behaved as a random noise-like series; whereas due to deep transpiration, the moisture of the deep layer had a persistence time-scale longer than a month, consistent with characteristic time-scales found for deep transpiration.

关键词: moisture vertical distribution     moisture temporal variation     texture stratification     irrigation     meteorological forcing     urban landscape    

彩色测温方法中物体辐射色域的界定和划分

王安全,程晓舫,陆少松

《中国工程科学》 2002年 第4卷 第8期   页码 54-57

摘要:

介绍了彩色测温方法的基本原理,并基于可见光波段内光谱发射率的线性模型给出物体辐射颜色色品的表述;明确了一个色品最多只能求解出两个温度;解决了彩色测温方法中物体辐射色域的界定问题,并将辐射色域划分为温度单解域和双解域。

关键词: 辐射测温     彩色测温     色域     发射率    

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 513-528 doi: 10.1007/s11708-019-0638-7

摘要: It is difficult to accurately measure the temperature of the falling particle receiver since thermocouples may directly be exposed to the solar flux. This study analyzes the thermal performance of a packed bed receiver using large metal spheres to minimize the measurement error of particle temperature with the sphere temperature reaching more than 700°C in experiments in a solar furnace and a solar simulator. The numerical models of a single sphere and multiple spheres are verified by the experiments. The multiple spheres model includes calculations of the external incidence, view factors, and heat transfer. The effects of parameters on the temperature variations of the spheres, the transient thermal efficiency, and the temperature uniformity are investigated, such as the ambient temperature, particle thermal conductivity, energy flux, sphere diameter, and sphere emissivity. When the convection is not considered, the results show that the sphere emissivity has a significant influence on the transient thermal efficiency and that the temperature uniformity is strongly affected by the energy flux, sphere diameter, and sphere emissivity. As the emissivity increases from 0.5 to 0.9, the transient thermal efficiency and the average temperature variance increase from 53.5% to 75.7% and from 14.3% to 27.1% at 3.9 min, respectively. The average temperature variance decreases from 29.7% to 9.3% at 2.2 min with the sphere diameter increasing from 28.57 mm to 50 mm. As the dimensionless energy flux increases from 0.8 to 1.2, the average temperature variance increases from 13.4% to 26.6% at 3.4 min.

关键词: packed bed     solar thermal power plants     high heat fluxes     radiative heat transfer    

Photothermal-Management Agricultural Films toward Industrial Planting: Opportunities and Challenges

Song Zhang,Zhang Chen,Chuanxiang Cao,Yuanyuan Cui,Yanfeng Gao,

《工程(英文)》 doi: 10.1016/j.eng.2023.06.016

摘要: As indispensable parts of greenhouses and plant factories, agricultural covering films play a prominent role in regulating microclimate environments. Polyethylene covering films directly transmit the full solar spectrum. However, this high level of sunlight transmission may be inappropriate or even harmful for crops with specific photothermal requirements. Modern greenhouses are integrated with agricultural covering materials, heating, ventilation, and air conditioning (HVAC) systems, and smart irrigation and communication technologies to maximize planting efficiency. This review provides insight into the photothermal requirements of crops and ways to meet these requirements, including new materials based on passive radiative cooling and light scattering, simulations to evaluate the energy consumption and environmental conditions in a greenhouse, and data mining to identify key biological growth factors and thereby improve new covering films. Finally, future challenges and directions for photothermal-management agricultural films are elaborated on to bridge the gap between lab-scale research and large-scale practical applications.

关键词: Greenhouse     Photothermal management     Passive radiative cooling     Light scattering    

基于低复杂度最大似然的STBC-MIMO系统高效调制识别方法 Article

Maqsood H. SHAH, Xiao-yu DANG

《信息与电子工程前沿(英文)》 2020年 第21卷 第3期   页码 465-475 doi: 10.1631/FITEE.1800306

摘要: 针对正交空时块编码的多输入多输出系统(STBC-MIMO),提出一种基于低复杂度似然比的自动调制识别方法。使用迫零均衡技术修正平均似然比检验函数(ALRT)。与目前MIMO系统调制识别中使用的ALRT相比,本文提出的检验函数具有较低计算复杂度。在接收机具有非理想信道状态信息的条件下,对提出的方法在盲信道场景中进行分析。同时对不同天线数目的场景进行性能分析,利用Alamouti-STBC系统(2×2与2×1)和空时发射分集(4×4)的不同发射和接收天线配置验证本文所提方法,其中一些常用的调制方式被用作调制测试池。以正确识别率为指标,采用蒙特卡罗仿真法评价本文方法。仿真结果表明,该方法在低信噪比下有较好分类精度,在信道状态信息估计误差方差大的情况下有较好稳健性。

关键词: 多输入多输出;空时块编码;最大似然;自动调制识别;迫零均衡    

用于个人降温和保暖的具有定制热传导和热辐射特性的双功能非对称织物 Article

Yucan Peng, Hiang Kwee Lee, David S. Wu, Yi Cui

《工程(英文)》 2022年 第10卷 第3期   页码 167-173 doi: 10.1016/j.eng.2021.04.016

摘要:

为了让人体感到热舒适,同时节约能源,个人热管理正逐渐成为一种颇有前景的策略。通过更好地控制人体散热,个人热管理可以实现有效的个人降温和保暖。本文提出了一种简单的表面改性方法,在商用织物的基础上定制热传导和热辐射特性,以便更好地管理从人体到环境的整个传热路径。本文对一种同时具有降温和保暖效果的双功能非对称织物(BAF)进行论证。凭借粗糙度不对称和表面改性等优点,BAF在降温模式下通过增强热传导和热辐射表现出显著的降温效果;在保暖模式下,两条路径的散热都减少,从而实现个人保暖。结果表明,在BAF的降温和保暖模式下测得的皮肤温差可达4.6 ℃,表明一件BAF衣服可以扩大人体的热舒适区。希望本研究可为用于个人热管理的织物的设计提供新的视角,并为现有的用于个人降温和保暖的织物的简单改性提供新的解决方案。

关键词: 织物     个人热管理     双功能非对称织物     热传导     热辐射    

标题 作者 时间 类型 操作

Challenge of global climate change: Prospects for a new energy paradigm

Michael B. MCELROY

期刊论文

Global sources, emissions, transport and deposition of dust and sand and their effects on the climate and environment: a review

Feng Wang, Xueqiu Zhao, Cynthia Gerlein-Safdi, Yue Mu, Dongfang Wang, Qi Lu

期刊论文

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

期刊论文

A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling

Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI

期刊论文

Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer

Zeshao CHEN, Songping MO, Peng HU, Shouli JIANG, Gang WANG, Xiaofang CHENG,

期刊论文

Modeling radiative effects of haze on summer-time convective precipitation over North China: a case study

Xuying WANG, Bin ZHANG

期刊论文

Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG

期刊论文

Near-field radiative thermoelectric energy converters: a review

Eric TERVO, Elham BAGHERISERESHKI, Zhuomin ZHANG

期刊论文

基于蝶翅三级微纳米结构的定制光子工程辐射制冷纺织品

郭竑宇, 牛田野, 俞建勇, 王学利, 斯阳

期刊论文

The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing

Xiaofeng ZHANG,Xu ZHANG,Guanghe LI

期刊论文

彩色测温方法中物体辐射色域的界定和划分

王安全,程晓舫,陆少松

期刊论文

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

期刊论文

Photothermal-Management Agricultural Films toward Industrial Planting: Opportunities and Challenges

Song Zhang,Zhang Chen,Chuanxiang Cao,Yuanyuan Cui,Yanfeng Gao,

期刊论文

基于低复杂度最大似然的STBC-MIMO系统高效调制识别方法

Maqsood H. SHAH, Xiao-yu DANG

期刊论文

用于个人降温和保暖的具有定制热传导和热辐射特性的双功能非对称织物

Yucan Peng, Hiang Kwee Lee, David S. Wu, Yi Cui

期刊论文